
Best Practices for Implementing Agile
Methods: A Guide for Department of
Defense Software Developers

E
-G

o
ve

rn
m

e
n

t/
Te

ch
n

o
lo

g
y

 S
e

ri
e

s

Ann L. Fruhling
Associate Professor
Information Systems and Quantitative Analysis
Peter Kiewit Institute
College of Information Science and Technology
University of Nebraska at Omaha

Alvin E. Tarrell
Doctoral Student in Information Technology
Peter Kiewit Institute
University of Nebraska at Omaha

2 0 0 8

Ann L. Fruhling
Associate Professor
Information Systems and Quantitative Analysis
Peter Kiewit Institute
College of Information Science and Technology
University of Nebraska at Omaha

Alvin E. Tarrell
Doctoral Student in Information Technology
Peter Kiewit Institute
University of Nebraska at Omaha

Best Practices for Implementing
Agile Methods: A Guide
for Department of Defense
Software Developers

E-Government/Technology series

Upper left: In flight over Pohang, South Korea, U.S. Navy photo by MC2 Sandra M. Palumbo.
Upper right: Whiteman Air Force Base by TSGT Lance Cheung.
Lower left: Offutt Air Force Base by PH2 (NAC) Jeffrey S. Viano.
Lower right: Ramstein Air Base, Germany, by MSGT Bill Kimble, USAF.

Cover photos courtesy of DefenseImagery.mil.

3

T A B L E O F C O N T E N T S

Foreword...4

Executive Summary...6

Introduction..9
Challenges of Transforming Department of Defense

Information Systems .. 9
Advantages of Agile Development Methods.................................10
Paradigm Shift from Plan-Driven to Agile......................................11
Research Method and Structure of the Report...............................13

Agile Development Methodologies...15
The Agile Movement..15
Overview of Scrum ...17
Overview of eXtreme Programming..20

Organizational Readiness and Best Practices......................................25
Organizational Readiness...25
Best Practices for Initial Startup..26
Best Practices for Project Implementation30
Best Practices for Ongoing Development.....................................32

Conclusion ...34

References..36

About the Authors...39

Key Contact Information...41

IBM Center for The Business of Government4

F o r e w o r d

Best Practices for Implementing Agile Methods

David Amoriell

On behalf of the IBM Center for The Business of Government, we are
pleased to present this report, “Best Practices for Implementing Agile
Methods: A Guide for Department of Defense Software Developers,”
by Ann L. Fruhling and Alvin E. Tarrell.

The Department of Defense needs to respond quickly to changing
threats and requirements. Increasingly, this rapid response capability
requires an ability to field new software applications quickly as well.
Traditional software development methods can take too long, cost too
much, or lead to a solution to a requirement that is not in fact what
the user really needed. Agile software methods offer many advantages,
including speed. They also have the ability to evolve quickly to meet
users’ real, as opposed to apparent, needs. In addition, they are cheaper
than more traditional methods. Though not a panacea, agile methods
offer a solution to an important class of problems faced by organiza-
tions today.

This report offers a guide to how Department of Defense (DoD) organi-
zations can use agile methods to meet DoD’s mission more quickly
and effectively at a lower cost. The best practices outlined in this report
come from interviews with 11 project teams that have used agile meth-
ods to meet mission requirements. The techniques described have appli-
cability to any organization facing fast-changing problems, the need to
act and adjust quickly, and limited budgets.

Agile software methods, like any software methodology, require tech-
nical sophistication, but it would be a mistake to focus only on the
technical aspects. Because agile software methods represent a change
from traditional approaches, organizational factors are very important.
The culture of the organization needs to be open to change, not
entrenched in traditional approaches. Communication must be open,
and information should flow easily among participants. The informa-
tion technology infrastructure must be robust. Using agile software
methods will take sustained leadership from senior executives to be
successful. It is too large a change from traditional practice to simply
be delegated and delivered.

Albert Morales

www.businessofgovernment.org 5

Best Practices for Implementing Agile Methods

The authors of this report found that a best practice is to form a small
team, give team members good tools, start on small projects, and
expand based on early successes. The team needs to have a “can do”
attitude, be experienced problem solvers, and work well together in an
atmosphere of mutual trust. These factors are as important as domain
knowledge. As the organization builds experience with agile techniques
and success builds credibility, their use can spread to other areas. The
organization will then have the opportunity to make further improve-
ments based on firsthand knowledge of what works.

The best practices for implementing agile software methods are the
same as for rolling out any new business process. The difficult issues
are not technical. Many organizations have effectively used agile
programming techniques to enhance their mission. The techniques
are known and can be replicated. The difficult part is applying the
technique to the right problem, dealing with the change management
issues that arise from a new way of working, and finding a path from
small early successes to its use as a standard business process.

We hope this collection of best practices based on the experience of the
Department of Defense will help other organizations become more agile.

Albert Morales
Managing Partner
IBM Center for The Businessof Government
albert.morales@us.ibm.com

David Amoriell
General Manager, Federal Sector
IBM Global Business Services
amoriell@us.ibm.com

IBM Center for The Business of Government6

Best Practices for Implementing Agile Methods

E xecuti v e S u m m a r y

Government leaders and defense contractors are con-
stantly seeking faster and better methods to get criti-
cal information, knowledge management applications,
and decision support tools into the hands of decision
makers and warfighters. These issues can be especially
challenging for Department of Defense (DoD) entities
due to rapidly changing operational requirements,
preoccupation with other more pressing needs, ever-
advancing technological capabilities, and a contin-
ued emphasis on a more streamlined U.S. military.

These factors are driving many defense-related
organizations to examine their fundamental infor-
mation technology (IT) system development pro-
cesses in search of opportunities for improvement.
Agile system development methodologies offer one
solution. Widely used in the commercial sector,
they were originally developed to address similar
operational environments.

Agile methods purport to streamline the systems
development process in general and to bring signifi-
cant improvements such as more reliable delivery of
required functionality within a shorter elapsed time.
These benefits will only fully accrue if the underly-
ing methodologies are properly implemented.

In this study, 11 IT project teams from multiple
organizations that were experienced in agile
development practices were interviewed and sur-
veyed to identify their best practices. This involved
seven DoD project teams located at the United
States Strategic Command (USSTRATCOM), three
industry project teams, and one university team.

The experience of the organizations using agile
methods ranged from one to four years. Nine of
the 11 teams were centralized. One team was

distributed among USSTRATCOM and the prime
contractor’s headquarters; another team was dis-
tributed among several COCOMS (Combatant
Commands). Team members from all levels (for
example, developers, business owners, analysts,
project leaders, government program managers, and
government functional managers) were interviewed.

The report addresses the following:

Key activities organizations implemented that posi-•	
tively impacted the introduction and management
of the agile software development process

Specific agile best practices and principles that •	
were followed

The ways in which several best practices were •	
modified to fit the customer-specific develop-
ment environment

We also review the key steps that agile teams take
to ensure that a quality IT product is delivered to
the customer for implementation. In short, we
provide a synopsis of the currently accepted best
practices for use of agile software development
methodologies within a DoD-related environment,
thereby assisting and supporting DoD organizations
and contractors in their acceptance of and migra-
tion to agile methods.

Organizational Readiness
Several key factors must be considered before
beginning the transition to the use of agile methods.
First and foremost, there must be a pre-existing
underlying organizational culture that is receptive
to change. Second, there must be an underlying IT
infrastructure that can support the demands of the

www.businessofgovernment.org 7

Best Practices for Implementing Agile Methods

agile development effort and help ensure the viabil-
ity of fluid product releases. Management commit-
ment to this effort is also critically important, and
can be demonstrated through the previous two
factors as well as other means. Finally, the scope
and criticality of the projects included in the initial
transition to agile methodologies should also be
carefully considered.

Organizational culture. Transitioning to agile meth-
ods will require changes in the thought processes at
the operational levels of IT organizations. This will
involve a significant cultural shift in many organiza-
tions. Management needs to assess questions such
as: How does our organization as a whole react to
change? How entrenched are the members of our
organization in the current process? How good is
communication within the organization? Does infor-
mation flow freely up and down the hierarchy?

Nearly all of the companies we interviewed and
surveyed for this research report highlighted organi-
zational culture as the key determinant of successful
movement to agile methods, and answers to these
(and similar) questions will indicate the readiness
of the organization to accept the transition.

IT infrastructure. The underlying IT infrastructure is
always important, but that importance is magnified in
the agile environment. Most of the organizations we
contacted pointed to the availability and use of
automated testing and tracking tools as one of the
main contributors to their successful transition to and
employment of agile methods, and the impact of those
resources is lessened if they are not state-of-the-art.

Leadership commitment. The level of commitment
and endorsement from the top leadership and man-
agement also determines success. There must be
both horizontal and vertical dedication to the agile
process across the organization. Several of the
teams reported the importance of both preliminary
and ongoing training and consultation services pro-
vided by “agile experts” as key to their successful
transition and continued operation. These start-up
and ongoing maintenance costs create some not
insignificant overhead costs to transitioning to the
use of agile methods, and those costs can only be
justified with full management support and a
sponsor who is committed to championing the
agile movement.

Starting small. Certain projects are more compatible
with agile methods than others. Projects that have
emergent and rapidly changing requirements, highly
experienced technical and knowledgeable IT staff
available, and collaborative system owners are the
best candidates for successful agile projects. The key
is to start small and grow from there. Essentially all of
the organizations we interviewed initially employed
agile methods on a relatively small project, generally
not a mission-critical or life-threatening one and not
at an enterprise level.

Best Practices
We compiled a collection of best practices based
on our surveys and interviews. We categorized these
practices chronologically based on traditional proj-
ect development phases: initial start-up, project
implementation, and ongoing development.

Best Practices for Initial Start-Up
At the initiation of the transition to agile development
methods, the organization’s leadership team and
managers must demonstrate their commitment to the
process. This includes supporting and participating in
agile team building workshops and sponsoring agile
process training across the entire organization.

The agile team should consist of IT professionals
who are both technically experienced and possess
in-depth domain knowledge. Excellent communica-
tion and interpersonal skills are a must. Management
should ensure that the agile development effort is
the only assignment of the agile team members and
that system owners are assigned to the agile devel-
opment project full-time. The project team must also
possess a high level of mutual trust, so team-build-
ing activities are important.

The IT infrastructure must include a variety of
IT support tools, a trusted version control manage-
ment system, easy and quick access to technical
experts, and, whenever possible, access to collab-
oration engineering techniques and group support
systems.

Best Practices for Project Implementation
The agile implementation should include holding
initial and incremental planning meetings, introduc-
ing the agile process on a pilot project, and carefully
matching the project tasks to each developer’s talents.

IBM Center for The Business of Government8

Best Practices for Implementing Agile Methods

It’s important to scale the development process to
match the project’s size. Shared versus individual
responsibility is heavily emphasized in agile method-
ologies, so managers should focus on the progress
of the task, not the performance of individuals.

The project manager should keep the best practices
of the past while also considering an à la carte
approach when implementing agile development
practices. Also, agile practices may in themselves
need to be tailored. For example, if pair program-
ming is adopted, it may be that assigning a lead
pair programmer is beneficial. Flexibility is the
watchword in agile development.

Best Practices for Ongoing Development
As the agile development process proliferates
throughout the organization, lessons learned can
be shared by designating an “agile champion team.”
This team works together and across project teams
to help share successful strategies and develop tech-
niques to address roadblocks and barriers to progress.

Additional best practices include automating testing,
employing a migration control expert, and schedul-
ing open time to wrap up loose ends. The program
manager and project director need to leverage mul-
tiple forms of communication, find ways to provide
access to the Internet to research solutions, and
address classified environment challenges inherent
in any DoD-related development environment.

Conclusion
The adoption of agile development methods by
defense-related organizations is important in that
their use will assist these groups as they help DoD
transform itself into a more modern, more adapt-
able, and more service-oriented entity. Agile
methods can and should be at the core of that
transformation, and improved understanding and
appreciation of agile methods will facilitate and
foster their increased use within DoD.

www.businessofgovernment.org 9

Best Practices for Implementing Agile Methods

Introduction

Challenges of Transforming Department
of Defense Information Systems
The term agility is a key attribute when describing
measurement of a military unit’s ability to meet
varying sets of mission requirements. Agility in the
context of the military environment is the ability to
quickly adapt and adjust to changing conditions.
According to Department of Defense Chief
Information Officer John G. Grimes:

… succeeding in the new strategic environ-
ment requires levels of responsiveness and
agility never before demanded of our forces.
The U.S. Defense Department must trans-
form from its historical emphasis on ships,
guns, tanks and planes to a focus on infor-
mation, knowledge, and actionable intel-
ligence” (Grimes, 2006).

Thus, the U.S. Department of Defense (DoD) is in
the midst of an information technology (IT) infra-
structure transformation and is moving toward a
net-centric, service-oriented architecture (SOA) that
promotes information sharing among all users. Instead
of a strict hierarchy where decisions are pushed
down, networked warfighters (decision makers) are
cooperatively pursuing the strategic goals of the
commander in a much more decentralized fashion.
Systems that support the net-centric goal must be
real-time and be able to assimilate a rapidly chang-
ing environment in order to provide the information
necessary to support quick, accurate recommenda-
tions and the resulting decisions. In addition, these
systems need to be adaptive and able to quickly
adjust to new technological capabilities and the
changing political landscape. For example, this
transformed environment would provide individuals

an architecture that links “get weather” with “get
target list” and “get asset status” services together to
allow construction of a mission plan without having
to go to separate information systems. Hence,
authorized users throughout the organization could
employ various services in combination to achieve
the desired end state (Grimes, 2006).

Movement toward this SOA represents a great leap
forward for DoD. Today’s DoD information architec-
ture is stovepiped, and movement away from that
construct is necessary to allow realization of the full
value and benefit of the SOA. Thus, one of the main
challenges facing DoD is creation of an enterprise
infrastructure that enables people, processes, and
technologies to work together to provide timely
and trusted access to information through informa-
tion sharing and collaboration. This shift to SOA
will impact not only the organizational culture,
but also the way information systems are devel-
oped and the speed at which they are available
to DoD. While the technology change is significant,
changing the thought processes—the cultural shift
and the evolving methodologies in which these
information systems are developed, maintained,
and enhanced—may be even more challenging.

In response to these challenges, various organiza-
tions within DoD are working together to build new
information systems that provide seamless informa-
tion sharing. Examples of these new types of infor-
mation systems and services include the following:

Wiki capabilities are now available where the •	
DoD community can come together and share
information in real time.

The Strategic Knowledge Integration Web, or •	
SKIWeb, is an event tracking and blogging tool

IBM Center for The Business of Government10

Best Practices for Implementing Agile Methods

developed at U.S. Strategic Command that is
finding increased use throughout DoD to facili-
tate the sharing of information regarding military
and world events among members of the com-
mand and intelligence communities.

An Intellipedia-based information architecture •	
supports distributed information sharing.

The migration toward information-based warfare,
combined with a need for greater agility stemming
from rapidly changing requirements, calls for changes
in the way military defense information systems are
developed. New approaches to implementing these
systems in a timely manner are also required.

Due to the rapidly changing operational require-
ments, preoccupation with other more pressing
needs, ever-advancing technological capabilities,
and a continued emphasis on a more streamlined
U.S. military, both government leaders and defense
contractors are seeking faster and better ways of get-
ting critical information and decision support tools
into the hands of decision makers and warfighters.
This has led to a strategy of decentralization of infor-
mation, a key component of supporting the migra-
tion toward net-centric, service-oriented architectures
for current DoD information systems (Net-Centric
Checklist, 2004). While this type of infrastructure
seems well-suited to the task of supporting emergent
requirements, the linear nature and high-density
documentation required by plan-driven software
development methods traditionally employed by
the current DoD IT development and support teams
typically do not (Alleman et al., 2003). Attempts to
address this drawback have come in the form of
spiral development approaches (Boehm, 1988) that
essentially break the traditional waterfall method
(Royce, 1970) down into smaller iterations based
on risk or priority of functionality (Potok, 1992).

Advantages of Agile Development
Methods
More recently, agile software development meth-
ods—for example, Scrum (Schwaber and Beedle,
2001) and eXtreme Programming (Beck, 2000)—
have aimed to further streamline the development
process and bring significant improvements such as
timely delivery of the required functionality of vari-
ous SOA and command and control (C2) systems.

Agile system development has several anticipated
benefits:

Agile methods can improve the design process. •	
Iterative releases being used by customers, even
those having had little design input, can serve as
ongoing usability tests.

Agile development also allows automated usage •	
tracking and testing tools to be brought into play
sooner and in a more relevant context.

Lower-risk release cycles can encourage design •	
experiments and reduce, if not eliminate, the
writing of lengthy specification documents.

The fast release pace gives an ongoing sense of •	
accomplishment.

‘Agile’ Spells Success for Strategic
Command’s IT Integration Efforts

When the Global Operations Center at the U.S.
Strategic Command (USSTRATCOM) needed a
new capability that would integrate 21 web-
enabled data sources across a collaborative net-
work, the acquisition team went to one of their
core contractors to determine its feasibility. The
response: at least one full year at the earliest to
develop and implement, with several spiral years
if needed. This long turn-around time was not
acceptable to the USSTRATCOM commander, a
strong advocate for quick turn-around methodolo-
gies and innovative solutions.

He directed the acquisition team to consider other
options, so they contacted another contractor who
was noted for recent agile IT development success.
This contractor carefully reviewed the request and
reported that they could provide the requested
capabilities within three months using agile devel-
opment practices. Their plan was to deliver the new
capabilities in iterative cycles and adjust effort and
focus based on user feedback.

The second proposal was accepted, and the agile
development team successfully integrated 19 of the
21 data sources within the promised 90 days. The
project manager attributes the 75 percent reduction
in development time from the original proposal—
and significant savings—to the utilization of agile
development practices. “We see great value in what
‘agile development’ offers to a program and we will
continue to use it within our engineering practices,”
explained the project manager.

www.businessofgovernment.org 11

Best Practices for Implementing Agile Methods

Since there are closer team interactions, shared •	
goals, and less solitary time invested in elabo-
rate design, individuals are less defensive and
territorial about their designs (Armitage, 2004).

Agile system development styles also purport to
embrace situations involving changing or unclear
requirements, while also promoting user and
developer interaction (Beck et al., 2001). Perhaps
one of the most important reasons for the agile
movement is the acknowledgment that large,
long-term projects often change course during
development. Agile methods recognize that reality
and seek to produce finished, working, reliable
code in an iterative, incremental fashion in response.
These results can be more valuable to a customer
than an unfinished, poorly written, and unreliable
product derived from a set of poorly written or
poorly understood requirements based on the ini-
tial design (Armitage, 2004). In other words, agile
methods appreciate that providing partial solutions
earlier can be more valuable than providing full
solutions later, even though they may not be fully
finished (Sutherland, 2005).

Furthermore, agile methods exist to mitigate product
development risk. They are more empirical than other
methods, essentially using trial and error to reduce
the risk of building the wrong thing. Since users are
often likely to alter their requirements once they
see and test the system, successful projects involve
customer feedback on a regular and frequent basis.
Developers accept the expense of having more rou-
tine code rework and having to maintain all devel-
opment code close to release quality to achieve
the gains that come from the customer-centered
approach, where the customer plays a central role
during the design process. Essentially a series of
very-high-fidelity design experiments, these projects
achieve low-level certainty by accepting high-level
uncertainty (Armitage, 2004).

Armitage (2004) suggests that large projects be
subdivided into a series of mini-projects, each of
which can be quickly started, finished, tested, and
delivered to the customer. Each mini-project in turn
would form the basis for the next iteration, allowing
customers to provide ongoing feedback as the
project marches toward its ultimate completion.
This iterative approach should minimize risk, since
the frequent iterations with included reliability testing

and feedback would allow the system to “grow” into
existence while actually being used by the customer.
This approach would provide a system that more
closely matches user requirements than one whose
requirements were “determined” at project outset.

While agile methods such as Scrum and eXtreme
Programming (XP) are used in some government
and military projects, they have yet to reach their
full potential in those environments. Traditional
plan-driven methods are the mainstay today, partly
because they are considered by some to have less
risk and because they support CMMI Level-5 certi-
fication (Armstrong, 2007).

DoD projects are required to be CMMI Level-3
compliant, essentially forcing use of the more
mature development methodologies. However, recent
research findings show that it is possible, with stra-
tegic tailoring, for Scrum projects to achieve CMMI
Level-5 compliance, so that barrier to entrance may
be falling for agile methods (Sutherland, 2008).

Plan-driven methods were widely used in part
because they are more consistent with the atti-
tudes and approaches traditionally applied in the
hierarchical, highly structured military culture.
Nonetheless, there is a noticeable movement
toward agile approaches, and further development
successes using these methods will only hasten that
migration. Next, we further explain various reasons
supporting the paradigm shift from plan-driven to
agile methodologies.

Paradigm Shift from Plan-Driven
to Agile
Information systems that are designed and devel-
oped efficiently, accurately, and reliably—and that
meet the intended needs and expectations of the
stakeholders—are important goals of all organiza-
tions today. This is especially important for com-
mand and control systems that support information
warfare, network defense, missile defense, global
strike and integration, global intelligence, surveil-
lance and reconnaissance, as well as space and
combating weapons of mass destruction missions.

No one universal methodology for system develop-
ment will work for all projects (Iivari, 2001) and in
all environments. The traditional plan-driven system

IBM Center for The Business of Government12

Best Practices for Implementing Agile Methods

development methodology requires extensive
planning, codified processes, and rigorous reuse
(Boehm, 2002). This methodology works best when
developers can determine the requirements in
advance, including prototyping, and when the
requirements are relatively stable. The plan-driven
model is often used in practice because of its
straightforward and methodical, structured nature.
However, in practice, the plan-driven model has a
number of key shortcomings that have been widely
reported, including the inability to effectively handle
changing requirements and the tendency to be sig-
nificantly over budget and behind schedule (see,
for example, Biffl et al., 2005; Boehm, 2002;
Watson et al., 1997). As new technologies, infra-
structure, and expectations evolve at Internet speed,
the plan-driven system development methodologies
struggle to keep pace.

To address some of these shortcomings of plan-
driven methodology, new system development
models were proposed, including the spiral model

(Boehm, 1988) and agile approaches such as Scrum,
eXtreme Programming, and Crystal (Highsmith and
Cockburn, 2001). Scrum is a team management
process for agile development and can be used as
a wrapper for existing methodologies. eXtreme Pro-
gramming is an agile software development process
consisting of 12 principles and techniques. Crystal
is referred to as a family of software development
methods that are tailored to different team sizes,
and is a philosophy that embraces frequent delivery,
reflective improvement, and osmotic communica-
tion (Cockburn, 2002). All Crystal approaches share
common features and have three priorities: safety
(in project outcome), efficiency, and habitability
(developers can live with Crystal).

Meeting stakeholders’ expectations accurately and
in a timely manner during a DoD software develop-
ment project is a complex task. Most of these proj-
ects involve multiple stakeholders from various DoD
organizations with different, often competing, needs
and goals. One way to address the competing needs

Understanding the Military/Government IT Development Environment

Systems development projects in the military/government environment have several unique attributes. DoD IT
teams are assembled and managed by independent contractors, with the main contractor known as the prime
contractor and supporting contractors known as subcontractors. Software development and system support proj-
ects are competitively bid on by IT defense contractors, and the contract lengths vary from one to four or five
years. This establishes an environment where the major defense contractors are both competing with each other
to become the prime contractor on a project every few years, but are also cooperating with each other to offer
subcontractor support as much as possible in the intervening years.

Contractors hire civilians to work on the IT development projects, and many of the positions require an active
security clearance. These civilians may or may not be retired military employees, but oftentimes are because
of the security clearance requirement. These contractors also may or may not have military experience directly
related to the project being worked. The IT development team reports to a government program manager (PM)
and works directly with one or more government functional managers (FMs).

The PM is responsible for the overall health and funding of the program, and generally focuses on concerns
more than 12 months in the future. The PM oversees the project, ensuring that the project deliverables are
completed on time and within budget, and meet the contractual requirements. Thus, the PM would be consid-
ered the system owner.

On the other hand, the FM is generally concerned with day-to-day operations of the system, and is also charged
with determining needs to be addressed within the next 12 months. The FM office generally constitutes the
domain expertise for the information system, and helps determine the requirements for the system and signs off
on user acceptance testing of the system.

The PM and FM work together to determine what functionality will be in the system and prioritize the delivery of
the functionality for the short and long term. Various weekly status meetings occur between the DoD contractors
and the government program and functional managers. The PM and FM are frequently active duty military mem-
bers, so their positions are often rotated as frequently as every 24 months.

www.businessofgovernment.org 13

Best Practices for Implementing Agile Methods

is to work closely with stakeholders (system owners,
end users, and other customers) to ensure needs are
determined and conflicts are resolved. Thus, moving
toward a system development methodology where
daily interaction and even co-location with the sys-
tem owner/user occurs and one that continuously
assesses implementing the highest priority and most
useful capabilities for the stakeholders just makes
sense in this development environment.

Such new approaches focus on fast deliverables,
dynamic management of requirements, and rapid
iteration and incrementation. Although these new
approaches promise many benefits, the adoption
of agile system development approaches has been
sporadic within DoD, partly due to uncertainties
regarding the best ways to implement them in hier-
archical and traditional system development cul-
tures that are slow and often resistant to change.
Shifting to agile methods will require changes at
the operational levels of IT organizations. IT man-
agers need advice on when to use which method-
ology (Boehm, 2002; Glass, 2004) and how to
operationalize a particular methodology for their
particular development environment.

Research Method and Structure of
the Report
The intent of this report is to provide information,
insights, and practical, actionable advice to IT
managers and analysts to help them prepare their
organization to move to an agile system develop-
ment environment. In addition, the report high-
lights the best practices of information system
development teams that are successfully conduct-
ing agile development.

As part of our research for this study, 11 IT project
teams from multiple organizations that were
experienced in agile development practices were
interviewed and surveyed to identify their best
practices. This involved seven DoD project teams
at USSTRATCOM, three industry project teams,
and one university team. The experience of the
organizations using agile methods ranged from
one to four years. All of the teams except two were
centralized. One team was distributed among
USSTRATCOM and the prime contractor’s head-
quarters; another team was distributed among sev-
eral COCOMs, or Combatant Commands. Team

members at all levels (developers, system owners,
analysts, project leaders, government program
managers, and government functional managers)
were interviewed.

Our research was conducted primarily at the U.S.
Strategic Command, located at Offutt Air Force Base
in Bellevue, Nebraska (see the sidebar for more on
USSTRATCOM).

Defense contractors who can effectively and efficiently
implement agile system development processes
will have a competitive advantage when vying for
DoD contracts. In support of this effort, the report
provides details on how contractors might best
implement agile development methods. We begin
with a short discussion of the agile movement and
more detailed background information on two
popular agile methodologies: Scrum and XP. We
then examine key factors organizations need to

The U.S. Strategic Command

In 2002, the USSTRATCOM transitioned from a
one mission-centric command focused on nuclear
issues to one having eight missions: Information
Operations; Cyberwarfare; Missile Defense;
Global Strike and Integration; Global Intelligence,
Surveillance and Reconnaissance; Space;
Combating Weapons of Mass Destruction; and
Nuclear Issues. This transition has understandably
caused major adjustments in the USSTRATCOM
organizational structure.

USSTRATCOM is a unified command composed of
members from all four branches of the U.S. military
(Army, Marines, Navy, and Air Force). These branches
collaborate to provide specialties of all the services
to optimize performance of the diverse missions of
USSTRATCOM. Its role in the armed services is a
“global integrator,” with responsibilities including
information operations, strategic warning and missile
defense, and global command and control functions
(USSTRATCOM, 2006). Many mission-critical infor-
mation systems are maintained at USSTRATCOM.

USSTRATCOM is an organization that must react
quickly and accurately to global events. To succeed
at all these missions, which in some cases are quite
diverse, the command needed to move to an even
more adaptive, flexible, and collaborative environ-
ment that includes shifting to an agile information
system development and support environment.

IBM Center for The Business of Government14

Best Practices for Implementing Agile Methods

examine to determine readiness for transition to
agile processes. Then we present the best practices
employed by system development teams that are
currently practicing various techniques of agile soft-
ware development. We examine the characteristics
of the team and the attributes of the team members,
and also describe how an organization can posi-
tively impact the management of the agile process.
We also focus on the XP principles that are most
often adopted, how Scrum and XP principles are
adapted to the specific environment, and key steps
IT managers are taking today to ensure a quality
information system is delivered to the customer.

www.businessofgovernment.org 15

Best Practices for Implementing Agile Methods

Agile Development Methodologies

The Agile Movement
In recent years, agile software development
approaches have received a great deal of attention.
They aim to make software development more flexi-
ble and focus on highly dynamic environments with
quickly changing requirements (Cockburn, 2002).
The word agile implies effectiveness and maneu-
verability; an agile process is light—which is a
means of staying maneuverable—and sufficient, and
implies being able to stay in the game throughout
(Cockburn, 2002).

Agile development methods began to get public
attention in the late 1990s. In 2001, 17 software
professionals and consultants formed the Agile
Alliance and produced The Agile Manifesto (Beck
et al., 2001). The Agile Alliance movement was
motivated by the observation that software teams in
many corporations seemed entrapped in an ever-
increasing amount of processes and documentation,
with customers generally dissatisfied with the soft-
ware the developers were creating. Continued dis-
satisfaction with the available development methods
led to the introduction of various agile approaches,
for example, eXtreme Programming (Beck, 1999;
Beck, 2000), Scrum (Schwaber and Beedle, 2001),
and Crystal (Cockburn, 2002). These approaches are
based on the philosophy of the The Agile Manifesto.
Agile development methods focus on four key ideas
(Beck et al., 2001; Martin, 2003):

Individuals and interactions over processes and •	
tools. People are the most important success fac-
tor. Too much emphasis is often placed on cod-
ing knowledge and development tools. Instead,
team members and their communication with
each other should carry a much larger role.

Working software over comprehensive docu-•	
mentation. Software documentation is impor-
tant, yet information transfer is more effective
through the code itself and through human
interaction.

Customer collaboration over contract negotia-•	
tion. Successful software development requires
frequent communication and collaboration
between the user and the developer, rather than
a traditional statement of work.

Responding to change over following a plan. •	
Long-term project plans are not adaptable;
short-term plans provide more flexibility in
responding to change. It is considered more
effective to devise a detailed plan for a two-
week period and a general plan for a three-
month time period.

In addition, an agile approach encompasses a set
of principles stressing valuation of early and con-
tinuous delivery of functionality, collaboration, and
responsiveness to change over heavy documenta-
tion, negotiation, and plan-driven project manage-
ment (Beck et al., 2001). On the one hand, some
claim that this is in direct contrast to traditional
plan-driven development models and is essentially
“undisciplined hacking” (Paulk, 2001). Conversely,
others argue that agile methods focus on short
delivery cycles and continuous refinement (Beck,
2000; Beck et al., 2001) and therefore are just as
rigorous as plan-driven approaches. The Agile
Manifesto points out that formal planning and doc-
umentation are still essential, but should be pared
down to the essentials in creating environments
that are more responsive to change (Highsmith
and Cockburn, 2001).

IBM Center for The Business of Government16

Best Practices for Implementing Agile Methods

Differences Between Plan-Driven and Agile
Approaches
The key differences between the plan-driven and
agile approaches become apparent when compar-
ing the attributes of seven so-called home ground
parameters of a software project (see Table 1). The
home ground parameters can help determine which
development approach is best suited for the particu-
lar software project (Boehm, 2003). Table 1 summa-
rizes each of the home ground attributes.

Developers
The critical attributes of the developers for both
plan-driven and agile development teams are amica-
bility, talent, skill, and communication (Cockburn
and Highsmith, 2001). Developers following the
plan-driven approach often rely on external sources
of knowledge, have less system development experi-
ence, and may be decentralized. In contrast, the
agile approach recommends that the developers
have substantial previous experience in system
development and that they be co-located with
the customer as much as possible.

Customers
Customers include system owners and users, and
their attributes are also important to the success of
the system development process. The agile approach
stresses that customers should be committed, knowl-
edgeable, collaborative, representative, and empow-
ered (Boehm, 2002). As mentioned previously, they
should be co-located with the system development
project team.

In the context of this discussion, committed means
that the customer’s primary work assignment is to be
a member of the system development project team
and to be available to provide guidance and knowl-
edge for the system development process. In contrast,
the plan-driven approach usually relies on a customer
whose primary work responsibilities are assigned out-
side of the development project, and so he or she is
not always immediately available.

Requirements
The requirements traits of the agile approach are
in stark contrast to those of the plan-driven approach.
Plan-driven methods are most effective when require-
ments are stable and known in advance (Schwaber
and Beedle, 2001), whereas the agile approach
embraces volatile and emerging requirements. Agile
methodologies address the issue of how to better
handle the inevitable changes that arise throughout
the system development life cycle. In fact, agile
methods are not just about accommodating change,
but focus on embracing it without compromising
quality. System owners demand and expect innova-
tive, high-quality software that meets their needs
and expectations, and agile methods help meet
those demands.

Architecture
With the agile approach, the architecture is pro-
duced and refactored as needed, as opposed to
the plan-driven approach, which determines the
ideal system architecture up front for current and
foreseeable requirements (Astels et al., 2002).

Table 1: Home Ground Attributes for Plan-Driven vs. Agile Methods

Home Ground
Project Parameters Plan-Driven Attributes Agile Attributes

Developers Plan-oriented, adequate skills; access
to external knowledge

Agile, knowledgeable, co-located, and
collaborative

Customers
(system owners
and users)

Access to knowledgeable, collabora-
tive, representative, and empowered
customers

Dedicated, knowledgeable, co-located,
collaborative, representative, and
empowered

Requirements Knowable early; largely stable Largely emergent; rapid change

Architecture Designed for current and foreseeable
requirements Designed for current requirements

Size Larger teams and products Smaller teams and products

Refactoring Expensive Inexpensive

Primary objective High assurance Rapid value

Source: Boehm, 2003.

www.businessofgovernment.org 17

Best Practices for Implementing Agile Methods

However, recently many organizations are utilizing
initial envisioning and requirements modeling,
referred to as Iteration 0. This practice is particu-
larly useful for scaling the project to larger, more
complex, and globally distributed development
efforts (Ambler, 2007b).

Size
Agile methodologies are intended for smaller, less
complex information system projects that consist
of fewer than 10 team members. In the past, agile
methods were thought to be difficult to scale up to
large projects because of a lack of sufficient archi-
tecture planning and over-focusing on early results
(Boehm, 2002). However, in recent years this short-
coming has been reported less and less. For exam-
ple, there have been several organizations that have
successfully implemented agile practices with large
project teams, some as high as 200 developers
(Benefield, 2008; Adkins and Baldwin, 2008;
Ambler, 2007a).

Refactoring
The assumption is that with skilled developers and
small, less complex systems, the cost of refactoring
is essentially free. Conversely, refactoring costs in
larger, more complex systems with increased
requirements and less experienced developers
“can be expensive” (Boehm, 2002).

Primary Objective
The highest priority of agile methodologies is to
satisfy the customer by quickly delivering the most
valuable features early in the development project
(Beck et al., 2001). The intention of the agile move-
ment was to break the cycle of process inflation and
to focus on simple techniques for helping teams
quickly reach their goals (Beck et al., 2001). In an
agile environment, this is accomplished by imple-
menting more or less as a series of small projects
(called stories in the XP lexicon), strung together
into a larger, ongoing project. Each story has its
own requirements, specifications, and project
phases (Armitage, 2004).

Ambler (2001) points out that the agile approach
is an attitude, not a prescriptive process. The agile
method is a supplement to existing methods; it is
not a complete methodology. The agile approach is

a way to work together effectively to meet the needs
of project stakeholders. It is effective and is about
being effective. He also contends that the agile
method is something that works in practice; it isn’t
an academic theory (Ambler, 2001).

Overview of Scrum

The Scrum Process
Scrum is a project management method for agile
software development. The first Scrum meeting
occurred in 1993 at the Easel Corporation (Suther-
land, 2004). A development process was needed to
support enterprise teams where visualization of
design immediately generated working code, and
Scrum was developed as the solution to that prob-
lem. The “Scrum process” consists of a combina-
tion of daily meetings, Scrum “sprints” to the next
incremental delivery point, time boxing ongoing
development work, and processes for managing the
backlog. More details on each of these concepts
follow. Figure 1 on page 18 shows the agile devel-
opment process using Scrum.

Daily Scrum Meetings
Scrum emphasizes short daily meetings involving
all agile project team members, including the sys-
tem owner. These meetings are designed to address
immediate problems and keep tabs on progress on
a frequent basis. The daily meetings are led by a
ScrumMaster, who is charged with keeping track of
the status of the tasks and who is sometimes also a
technical contributor. The daily meetings provide an
opportunity for problems or misunderstandings to
be reviewed by managers and discussed before they
become damaging and impact schedules (Bradbury,
2007). Having a cross-functional team is also bene-
ficial. Daily Scrum meetings generally center on
answering three key questions (Sutherland, 2005):

What did you do yesterday?•	

What makes sense to do tomorrow/today?•	

What is blocking the way?•	

Scrum Sprints
All development for an increment release occurs
within a time box known as a “sprint” within
Scrum. Scrum sprints are usually in 30-day incre-
ments, and the set of requirements the team works

IBM Center for The Business of Government18

Best Practices for Implementing Agile Methods

on during a sprint are frozen at the outset. Changes
to these requirements are allowed only if the delay
is acceptable to everyone involved. At the end of
each sprint, the software is reviewed to ensure
ongoing feedback to the project team and system
owner (Martin et al., 2003), and changes are then
included in the next code delivery.

In some organizations, the timelines for individual
sprints vary depending on the purpose of the deliv-
erables (Sutherland, 2005). Table 2 is the scheduled
timeline some organizations have adopted.

Time Boxing
The Scrum methodology divides requirements into
a set of discrete tasks assigned to groups. Tasks are
organized into small time boxes, and all required
functionality is to be delivered within this set time
box. This technique promotes completion of verifi-
able functionality at a faster rate. To accomplish this,
daily drops of code iterations are submitted to a
shared server. Automated tests are run regularly to

quickly and consistently verify the code. This keeps
the development staff from being bogged down
with continuous testing and adds a number of
measurable interim progress points.

Processes for Managing the Backlog
Some of the more important guidelines for effective
implementation of Scrum include managing the sys-
tem backlog. The system owner controls and man-
ages the business plan, functional specifications,
system backlog, and prioritization. As a member of
the team, he or she works side by side with the
ScrumMaster. The system backlog should contain
one central prioritized list of all requirements. Only

Table 2: Sample Timeline for Scrum Delivery

Code Implementations Timeline

System maintenance Weekly sprints

Customer enhancements Monthly sprints

New application releases Quarterly sprints

Figure 1: The Agile Development Process Using Scrum

Source: Based on Rising and Janoff (2000).

Scrum daily meeting

Update backlog and
reprioritize tasks

Should this project
continue?

Wrap-up/Closure

Product delivery

Developer select task

Write test plan

Coding

Automated testing

Daily build

Initial planning
and design

Allocate and assign
tasks in a “sprint”

“Sprint” release
Yes

Finished

www.businessofgovernment.org 19

Best Practices for Implementing Agile Methods

one person, known as the system owner, controls
the system backlog. However, everyone can contrib-
ute to the list (Martin et al., 2003). The team confers
on items in the system backlog and identifies the
backlog items that are assigned to the next sprint,
and then the technical team members break down
the backlog items into manageable tasks. In some
teams, these tasks are written on sticky notes and
posted on a board for developers to select.

Between sprints, it is important for developers to
get enough clarity about the user requirements to
start coding for the next sprint. This is critically
important, since lack of understanding may cause
the developer to code well into a sprint before he
or she really understands the user experience well
enough to implement a solution, and that can be a
problem. One way to address this problem is to wrap
the Scrum process around the XP software develop-
ment practices. User stories and scenarios can help

sort out the missing requirement information and
improve understanding among the developers.

Another option is to overlap sprints and work on
requirement refinement in parallel with a sprint
involving previously defined requirements (Suther-
land et al., 2007). This gives the customer continu-
ous updates while also addressing the incomplete
requirements issue. Furthermore, the requirements
definition for system backlog items should be
worked concurrently with the current sprint to
enhance overall efficiency (Sutherland, 2005).

Table 3 provides a summary of the key elements of
the Scrum philosophy.

Benefits of Scrum
Organizations can achieve several benefits when
effectively implementing Scrum. It has been
reported that sprints can double system develop-

Table 3: Principles of Scrum

Principle Description

Daily Scrum meetings Daily status discussions with the entire project team. Often these are
“stand up” meetings and occur first thing in the daily work cycle.

Inclusive customer (system owner)
involvement Customers (system owner, user) are part of the development team.

Incremental releases Frequent intermediate deliveries of software with working functional-
ity. Incremental releases that include an opportunity to validate and
verify at shorter intervals, rather than at the end, providing time to
fix problems and thus reducing the cost of fixes.

Risk management Risk mitigation plans are created by the developers and implemented
at every stage of the project.

Collective sharing of tasks
and status

Transparency in planning and module development. Everyone
should know who is accountable for what and by when.

Frequent stakeholder meetings Frequent stakeholder meetings to monitor progress and provide
visibility of potential slippage or deviation ahead of time.

Immediate problem disclosure No problems are swept under the carpet. No one is penalized for
recognizing or describing an unforeseen problem.

Energized work environment Workplaces and working hours must be energizing. Developers
have a “can do” attitude.

Partial solution encouraged Appreciate that providing partial solutions earlier can be more
valuable than providing full solutions later.

Simple design Design solutions and work products that are the simplest version of
the idea and that can be easily changed and/or built on later.

Sprint/time boxing 30-day increments where a set of requirements are developed and
released and organized into time boxes.

Source: Based on Bradbury, 2007; Sutherland, 2005.

IBM Center for The Business of Government20

Best Practices for Implementing Agile Methods

ment productivity, that development teams repeat-
edly deliver projects on time and within budget, and
that the functionality is precisely targeted to end-user
demands (Sutherland, 2005). Recently it has been
reported that the implementation of Scrum in a data-
rich CMMI Level 5 company simultaneously running
waterfall, incremental, and iterative projects showed
that the productivity of Scrum teams was at least
double that of waterfall teams, even with CMMI
Level 5 reporting overhead (Jakobson, 2007).

These benefits are partly a result of reduction or
elimination of the development bottleneck because
of the improved management of the product back-
log during the sprints (Sutherland, 2005). Scrum
also assists in streamlining the requirements com-
munication among the team members, aligning
individual and organization objectives, creating a
culture driven by performance, supporting stake-
holder value creation, achieving stable and consis-
tent communication of performance at all levels,
and enhancing individual development (Sutherland
et al., 2007).

Evolution of the Scrum Sprint
There are variations on how Scrum has been
operationalized. Teams new to Scrum follow
Type A, and as teams become more experienced
and efficient they evolve to Type B. A third type
of Scrum (Type C) is also proposed (Sutherland
et al., 2007). One oft-cited concern for the Scrum
process is the downtime between the iterations,
although downtimes in the plan-driven approach
are often comparable.

Type A Scrum•	 is composed of isolated cycles
of work, which is suitable for groups that have
just started using Scrum since they can use the
downtime between sprints to adjust.

Type B Scrum•	 introduces the overlap between
sprints, so that the backlogs can be prepared at
the end of the last sprint, and the development
team has more time to figure out the functional
specification.

Type C Scrum•	 is fast-paced and adds more over-
lap between sprints. MetaScrum has been intro-
duced to allow company leadership to manage
multiple simultaneous product releases. Using a
MetaScrum approach could help with the small
size and scalability issues identified.

In one company where Type C Scrum was applied,
the company reported increased productivity and
enhanced project quality, and achieved more
stable and consistent communication (Sutherland
et al., 2007).

Overview of eXtreme Programming
One of the more prominent approaches adhering
to the principles of agile software development
is eXtreme Programming, or XP. A lightweight
software development methodology, XP was origi-
nally designed for teams of up to 10 people and
for projects that need to develop software quickly
in an environment of vague or rapidly changing
requirements (Beck, 1999). Although XP was origi-
nally envisioned for smaller projects, some groups
are finding success using XP on larger projects by
using a number of separate teams of up to 10 peo-
ple to address scalability; one project currently in
progress for DoD is implementing XP by using five
10-person teams on a large development project
(Adkins, 2008).

The XP process itself can be characterized by the
use of short development cycles, incremental plan-
ning, evolutionary design, and an ability to respond
to changing business needs. XP emphasizes produc-
tivity, flexibility, teamwork, minimal documentation,
and the limited use of technology outside of pro-
gramming. XP promotes a discipline of software
development that is “people-oriented” (Beck, 1999;
Beck, 2000). System owners are responsible for
identifying the features that the developer must
implement, assigning priority to them, and then
providing detailed acceptance tests for those stories
chosen for work. Developers constantly review sys-
tem scenarios—known as “stories” in XP—that are
of highest priority to the customer, and then focus
on quickly delivering the functionality described
in those scenarios (Beck, 2000).

Figure 2 illustrates the XP process, including the
frequent iterative development cycles of small
releases of functionality with constant end-user or
system-owner consultation and engagement (Beck,
1999; Beck, 2000). Developers should implement the
stories the system owner wants, in the order the sys-
tem owner wants, and verify that the software passes
any tests that the end user and/or system owner
specifies. Each cycle begins with gathering end-user
stories representing system requirements. The stories

www.businessofgovernment.org 21

Best Practices for Implementing Agile Methods

and their associated requirements are simple.
System owners and developers then determine
which requirements will be developed in the next
iteration by prioritizing the stories. Developers are
assigned to specific stories or tasks within the sto-
ries, and test plans are written before any coding
begins. Developers generally work in pairs, with one
person coding while the other verifies correctness
and conformity with standards. Roles are reversed
frequently within the paired teams to ensure that
each developer gets equal exposure, and team com-
position is sometimes rotated as well to maximize
cross-training opportunities.

Upon completion of the code, each section of code
is tested according to the defined functional test
cases. The end user and/or system owner must also
be engaged in testing. If the acceptance test fails, the
end user and/or system owner and developer will
meet again to adjust the end-user stories as neces-
sary, and the process will repeat. Once the testing
is completed with expected results and the system
owner accepts the results, the enhancements to the
system are released. New enhancements are gener-
ally released in two-week cycles. Following the
final incremental release, documentation is com-
pleted and a final delivery of the system is made to
the end user.

The difference between XP and iterative design is
that XP builds and releases smaller systems strictly

at extremely high fidelities, whereas iterative design
typically seeks to model, assess, and revise larger
systems at low and high fidelities (Armitage, 2004).

The 12 Principles of XP
XP itself is defined by a set of 12 principles. Table 4
on page 22 lists the principles and provides a short
description of each. These principles define XP,
and their use is core to the implementation of the
XP method. Research suggests that following these
principles leads to several advantages over tradi-
tional software engineering methods (Beck, 1999).
However, critics of XP state that the 12 principles
are highly interdependent and that each principle
cannot stand on
its own because of its reliance on at least one other
principle for support. Other studies have found
that tailoring the XP principles can be problematic
(Stephens and Rosenberg, 2004). However, our
research shows that organizations can successfully
tailor the 12 XP principles to best fit their develop-
ment environment, and that an XP project can be
successful even if not all of the principles are
adopted and used.

System Metaphor
System metaphors are a powerful way to relate a
difficult idea in an unfamiliar area by defining a
concept or feature using a simplistic representation
(Astels et al., 2002). For example, a system that is

Figure 2: The XP Process

Source: Based on Beck, 2000.

Gather/Adjust
scenarios

Interim or
full release

Final delivery

Assign
programming pairs

Code

Documentation

Write test plans

Acceptance testing

Fail

IBM Center for The Business of Government22

Best Practices for Implementing Agile Methods

Table 4: The 12 Key Principles of XP

Principle Principle Overview

System metaphor Metaphors are used for communicating an overarching description of the
system’s functionality, purpose, and conventions, thus providing customers and
developers with common ground on which they can stand. A metaphor does
not convey an understanding of what something is, but rather what it is like.
A metaphor is designed to allow customers who cannot conceptualize a
system to describe its likeness.

Incremental planning or
the planning game

Work is planned in chunks, with the on-site customer playing a large part in
requirements determination and work prioritization.

Planning is continuous and progressive. Developers estimate the cost of the
candidate features, and customers prioritize features based upon cost and
business value. The customer is heavily involved from the beginning and
selects the priority of the work to be done. Decisions are based on brief
estimates of work and cost provided by the developers.

Small releases Frequently releasing simple systems, and releasing new versions on a very
short cycle (one to three weeks). Development team puts core functions into
production early and then builds upon them using feedback from users.

Simple design Keeping the system design as simple as possible and finding and removing
extra complexity. Simple and small pieces of design allow frequent changes
to be made as necessary. A program built with XP should be the simplest
program that meets the current requirements. There is not much building
for the future. Instead, the focus is on providing business value.

Test-first development XP teams focus on validation of the software by writing tests first, then soft-
ware that fulfills the requirements reflected in the tests. Frequent user accep-
tance tests ensure the system is fulfilling user requirements.

Refactoring A technique used to improve code without altering functionality. Focuses on
simple, clean, non-repeating code that can be easily changed.

Pair programming Two programmers developing production code at the same time on one
machine. Pair programming has been shown by many experiments to produce
better software at similar or lower cost than programmers working alone.

Collective ownership Everyone owns all of the code, allowing necessary changes to be made by
anyone at any time. This lets the team go at full speed, because when some-
thing needs changing, it can be changed without delay.

Continuous integration Integrating new changes with current code as they are completed to detect
system failures as soon as possible. Perhaps surprisingly, integrating more fre-
quently tends to eliminate integration problems.

Sustainable pace Developers keep a normal work schedule to remain productive and interested
in the project. Tired developers make more mistakes. XP teams do not work
excessive overtime, thus keeping them fresh, healthy, and effective.

On-site customer A customer sits with the development team full-time. An on-site customer is
available for requirements clarification and business decisions that should not
be made by the developer. The effect of being there is that communication
improves, with less hard-copy documentation, which is often one of the most
expensive parts of a software project.

Uniform coding
standards

Developers write all code in accordance with the standards agreed upon by
the team to ensure that communication is made through code. Coding stan-
dards (language, formatting, syntax) are agreed upon by the team at the start
of a project. This facilitates communication and ease of development.

Source: Based on Beck, 2000.

www.businessofgovernment.org 23

Best Practices for Implementing Agile Methods

designed to sell books via the Internet may use a
shopping cart as a metaphor to understand the
process whereby customers can virtually select a
book and take it to the virtual checkout for purchase.
This gives the developers and users a common under-
standing of how the system is expected to perform.

Incremental Planning (or the Planning Game)
XP recognizes that not everything is known at the
beginning of the project. The XP planning game
makes a rough plan quickly and refines the plan as
things become more and more clear. Its goal is to
quickly derive a high-level plan for the next release
or iteration. Planning is continuous, and so occurs
throughout the system development process (Auer
and Miller, 2002).

Small Releases
Small releases and the continuous design process
allow for frequent review of the system by the
developers and the users (Shore, 2004). XP depends
on rapid feedback from the customer to establish
the accuracy of the functionality of the scenario
that is being implemented (Beck, 2000). This con-
stant and quick feedback helps identify errors, sup-
ports ongoing usability tests (Martin, 2000; Muller
and Padberg, 2003), and builds trust between the
user and the developer.

Simple Design
The simple design approach enables frequent
changes to be made to the system easily and
encourages design experimentation.

Test-First Development
According to Beck (2000), testing should occur
every time a code change is made, and efficiency
is improved when testing is automated. The imple-
mentation of an automated testing method and use
of test-driven development (where unit tests are
developed before actual code is written) have been
shown to increase confidence in functional and
system reliability (McMahon, 2003; Smith and
Stoecklin, 2001). Yet, test-first development does
not always scale well (Ambler, 2008).

Refactoring
Refactoring is a key principle of XP that allows for
the pieces of code to fit together better and adapt to

inevitable changes. Used to improve code without
altering functionality, refactoring is designed to pro-
duce programming units with a strong internal struc-
ture. Refactoring can be thought of as XP’s eraser; it
involves taking time out from adding new features in
order to rework and integrate what has already been
accomplished (Armitage, 2004). These refactored pro-
gramming units are generally more reusable, object-
oriented, pattern-oriented, maintainable, and simple
(Smith and Stoecklin, 2001). Further, refactoring
reduces the complexity of the code by removing
unused code and helping to implement consistent
patterns (Elssamadisy and Schalliol, 2002). Refactoring
also helps developers respond quickly to changing
requirements (Smith and Stoecklin, 2001). However,
there are mixed opinions on the costs involved with
refactoring. Refactoring is expected to be done on an
ongoing basis, and this may lead to extra cost and
higher system overhead.

Pair Programming
Pair programming occurs when two people develop
tests and create code side-by-side. The thought is
that there is a free flow of ideas, a richer experience
base, and early defect detection, resulting in
improved overall quality of the tests and code
(Muller and Padberg, 2003). There is an ongoing
debate on the value of pair programming (Keefer,
2005). In some cases, empirical research has
found that pair programming produces higher
quality code at a lower cost (McMahon, 2003).
Further, it is argued that the increase in the cost
of development using XP is offset by productivity
gains (for example, a pair of programmers has a
higher development speed than a single program-
mer) and increased quality of the code through the
continuous checking of the code against test cases
by the second programmer (Cockburn and Williams,
2000; Elssamadisy and Schalliol, 2002). Yet pair
programming could also increase system overhead
if higher code production and quality code do not
occur. In addition, in one case study it was a hard
concept to implement; team members were not
comfortable working as pairs (Poole et al., 2001).
Despite the resistance, quantitative improvements
in productivity occurred (Poole et al., 2001).

Collective Ownership
XP maintains collective ownership in which
everyone owns all the code and coding changes

IBM Center for The Business of Government24

Best Practices for Implementing Agile Methods

are made by anyone at any time. Close team
interaction, shared goals, and limited time invested
in elaborate designs provide for an environment
where there is less defensiveness and territoriality
(Armitage, 2004). Using XP as the development
methodology has been shown to increase team
morale (Poole et al., 2001).

Continuous Integration
XP is said to improve overall product stability and
maintainability (Poole et al., 2001). It is believed to
enable effective software development by allowing
organizations to deliver and change requirements
quickly during the software engineering process. This
is partially due to the continuous integration of new
code into the collective code base. Coding assign-
ments are broken into small tasks, preferably of no
more than one day of effort each. When each task
is completed, it is integrated into the collective code
base. At all times, regardless of the level of function-
ality, the system compiles, runs, and passes all the
tests. When the new code is integrated into the cur-
rent collective code base, the system must meet all
these criteria. Continuous integration often leads to
making new system builds multiple times per day.

Sustainable Pace
The sustainable pace principle recognizes the
importance of a reasonable workweek in which XP
team members can sustain quality. It is important to
come to an agreement within the team on expecta-
tions for the hours team members work to keep a
sustainable pace.

On-Site Customer
XP is serious about customer involvement—so seri-
ous that it is mandated that the customer be a full-
time member of the project and co-located with the
development team. The on-site customer is very
important to the success of the project, and provides
valuable, timely feedback. Without this feedback, the
system development process becomes trial and error.

Uniform Coding Standards
The value of implementing coding standards has
long been recognized when developing software.
Coding standards serve as a means to produce soft-
ware that has a consistent style, independent of the
author, resulting in software that is easier to under-
stand and maintain.

www.businessofgovernment.org 25

Best Practices for Implementing Agile Methods

Organizational Readiness
and Best Practices

This section details the knowledge gleaned from
our interviews and review of the literature on agile
processes. Eleven IT project teams experienced in
agile development practices were interviewed and
surveyed for this study. As mentioned earlier, this
involved seven DoD project teams, three industry
project teams, and one university team. Team
members at all levels (developers, system owners,
analysts, project leaders, government program man-
agers, and government functional managers) were
interviewed. Throughout this section we highlight
quotes from some of these interviews.

Organizational Readiness
The experiences of the agile project teams underlined
the need for leaders to examine four fundamental
aspects of their organization before embarking on
agile transformation. They are:

The state of the current organizational culture •	

The current IT infrastructure•	

Management and leadership commitment•	

The transitional first project •	

Current Organizational Culture: Ready to
Embrace Change?
The current organizational culture will impact the
readiness for agile methods. Management needs to
assess questions such as:

How does our organization as a whole react to •	
change?

How entrenched are the members of our organi-•	
zation in the current process?

How good is communication within the •	
organization?

Does information flow freely up and down •	
the hierarchy?

Answers to these and similar questions will indi-
cate the readiness of the organization to accept
agile methods.

Current Organizational IT Infrastructure:
Ready to Invest?
The current IT infrastructure that is available is
important to the overall success of agile develop-
ment. IT developers and managers need to have
access to various technology and technical resources
such as code development and testing tools, fast
Internet, and state-of-the-art workstations and testing
environments. This is important so that they are not
hampered by a less-than-adequate IT infrastructure.
Regardless of whether the system development
process is optimized, the end result will not meet
expectations if the IT infrastructure is marginal.
Therefore, there must be a pre-existing underlying
organizational culture and infrastructure that is
ready to support the agile development transition
before the best practices can be fully effective.

Management and Leadership Commitment:
Ready to Endorse?
Every team stressed the importance of management
and leadership backing to the success of their agile
development process. Endorsement of the agile
system development movement needs to be com-
municated from the top down. There must be both
horizontal and vertical dedication to the agile process
across the organization. Management can further
demonstrate its support by providing any additional

IBM Center for The Business of Government26

Best Practices for Implementing Agile Methods

software and technical resources needed by the
project team, including project management tools,
software testing tools, and Scrum and XP training.
The literature also acknowledges that one of the
most important factors for successful agile imple-
mentation is to have a sponsor who is committed
to championing the agile movement (Schatz and
Abdelshafi, 2005).

“In one organization, everyone from the
CEO to the end user participated through
a three-day agile education and training
course. This created unity and a common
understanding of where the institution was
going throughout the entire organization.”

Transitional Project Selection: Ready to Begin?
The scope, importance, size, and criticality of the
transitional projects using agile methodologies
need to be considered carefully. The key is to
start small and focus on a compatible project. Just
as a doctor does not start his medical training by
conducting open-heart surgery on a critically ill
patient, it is unrealistic to start the movement to
agile methods on a project supporting mission-
critical or enterprise-level projects. Essentially
all of the organizations we interviewed initially
employed agile methods on a relatively small proj-
ect within their organization and then progressed
from there.

Best Practices for Initial Startup

Select Agile Team Members with the Specific
Attributes Needed
Second to the pre-existing underlying organization
culture that is receptive to change, the agile team
members’ characteristics are the most important fac-
tor to the success of agile software development,
according to the teams interviewed. Team members
should possess the following attributes:

Can-do attitude. •	 Team members should have an
attitude of not being afraid to fail, a willingness
to learn from mistakes, and an ability to critically
assess a situation before pressing forward. They
should also have an outlook that embraces new
technology and technical challenges. There
should be a feeling of readiness among the team

members for the agile software development
process and new technology. Team members
are expected to be self-starters.

Experienced problem solvers. •	 IT developers
assigned to agile teams that were reported as
successful were intelligent, talented, strategic
thinkers and excellent problem solvers. Some
managers interviewed said the teams could still
be effective as long as at least half of the devel-
opment staff have a strong technical understand-
ing of various system architecture options and a
solid understanding of the application process.
Experienced and inexperienced developers
could be paired to minimize weaknesses and
facilitate mentoring. They also mentioned it is
advantageous if the ScrumMaster is also a tech-
nical expert.

Mutual trust. •	 Mutual trust among team mem-
bers was reported as one of the top keys to the
success of the agile process. In fact, most proj-
ect teams reported a high level of trust and
respect among team members.

Excellent communication and interpersonal •	
skills. Another characteristic of highly effective
teams is that team members have excellent
communication skills. They need to be able to
effectively communicate with technical and
non-technical people, engineers, managers,
and customers. Team members need to have
the ability to work effectively in a team environ-
ment and demonstrate team-building attitudes
and skills, interact positively with others, and
have a strong understanding of customer service
philosophies.

Domain-knowledge expertise. •	 Mission-critical
systems can benefit from agile development as
long as the majority of the team members are
experts who fully understand the complex pro-
cesses and expected results of the system they
are constructing.

Promote Team Building
Team building is especially important when team
members are unfamiliar with each other or when
new communication processes are introduced.
An important prerequisite for an agile development
project is to build trust and learn how team members
communicate. Many of the teams interviewed allo-
cated time to work on intra-team communication

www.businessofgovernment.org 27

Best Practices for Implementing Agile Methods

exchanges at the beginning of the project. One-
and two-day off-site workshops were employed.
Project managers reported that this further pro-
moted a team culture of collective ownership. In
some cases, it helped change the culture from an
environment where individuals were responsible
for the various tasks to a culture where the “team
as a whole” was responsible for the project.
Collective ownership has been found to be a key
XP principle to project success (Fruhling and
McDonald, 2008). Without strong collective own-
ership, the flexible and dynamic code development
process is hindered.

Train Team Members in the Agile Process
Formal training in agile practices such as XP and
Scrum across the organization is highly recom-
mended. This includes all levels of IT professionals
and non-IT management, the system owner(s),
customers, business analysts, and any other agile
development team stakeholders. IT managers
stated it was very important that all parties have
a common understanding of the agile practices
and how they will be implemented within their
organization.

Practical training can also be an effective tool.
Agile project teams interviewed recommended
starting with a pilot project and then implementing
it throughout the organization, project by project,
as new projects begin. Some organizations also
hired an external, experienced ScrumMaster to run
their first agile pilot.

Provide Information Technology Support Tools
The teams must have the right development tools
available at the outset. This may seem like an
obvious requirement, but in the government envi-
ronment, procurement, evaluation, and security scru-
tiny of various system development aides and tools
may take substantial lead time and additional levels
of approval. In one case, a DoD system manager
reported it would take over 18 months to go through
procurement and security audits to acquire a require-
ments management tool. The selected IT support
tools must be included in the IT project proposal
budget submitted by the DoD contractor. The most
common tools teams recommended as being espe-
cially effective and essential for agile development
were automated testing and collaboration tools

like Requisite Pro, Rational Robot, Websphere, and
Sharepoint. Rational Robot improved the speed
and quality of software testing for many teams, and
Sharepoint was identified as a good tool for issue
tracking of defects and changes. In addition, it was
extremely important to have a solid software ver-
sion management tool.

Ensure Trusted Version Control Management
It is especially important in a dynamic agile environ-
ment that developers be able to do daily builds of a
system that links all recently configured files. The
developers need to have complete confidence that
all the checked-in files are complete and included
in the daily build. Therefore, it is key that a robust
version control system is utilized.

One team especially benefited from having the
team’s technical lead create scripts that combined
all of the scripts to build the entire system daily
from scratch and keeping these scripts up-to-date
and available to all team members. This was for a
mission-critical, complex system, and thus ensured
everyone was working with the same set of modules
at all times. This improved productivity and also
allowed the two-week code drops to continue even
as the size and complexity of the system grew.

Consider Carefully the Organization and Size
of the Team
Preparing for agile software development may
require a reconfiguration of the IT project teams.
IT managers agreed that the ideal number of devel-
opers on a team was four; however, there could be
more if needed. The consensus was that the mem-
bers of each agile team should consist of:

Developers (four)•	

Quality Assurance tester•	

Human factor engineer•	

Database administrator•	

System architect•	

System owner/end user/customer (two in a DoD •	
environment: one primary and one backup)

Floating technical writer •	

IBM Center for The Business of Government28

Best Practices for Implementing Agile Methods

The Role of the Quality Assurance Tester
The Quality Assurance (QA) tester position is essential to the agile process because testing is so important to
the overall quality of the system, and the amount of testing needed grows with each iteration. The IT managers
stated that they automate what they can and what makes sense for regression purposes. The QA tester’s role is
basically to assist the project developers, analysts, and other project team members in writing test cases. They
then use scripting to automate those tests, usually in QTP, although one group also used Fitnesse. They create
driver scripts to allow the tests to be run at the push of a button or by an automated build process.

The QA tester needs to have the following qualities: a strong understanding of customer service philoso-
phies and the role of information management with regard to quality assurance and testing automation, in
addition to knowledge of and experience in structured analysis, application development strategies, testing
automation tools and processes, quality assurance strategies, and technical and analytical skills. QA testers
should have hands-on experience with software testing at all phases (unit, module, integration, regression,
system/acceptance, load, performance, end-to-end). They should have experience in both manual and auto-
mated testing environments and be able to develop quality assurance and testing strategies; develop and
document test scripts and cases using an automated testing tool; execute test scripts in accordance with the
test plans; verify and document test results utilizing testing tools and utilities; provide first-level support of
the testing tools and testing environment; and configure and support testing automation tools.

“Quality Assurance testers cannot assure quality, but they can assist in quality. It takes an entire
team to build a quality product, which very much includes the developers. What this person
brings is ‘smart’ testing, which is very different from the testing a developer would do. Develop-
ers tend to test the happy path. Also, there is an element of human testing that a computer can-
not do. The goal is to automate what a human cannot do (for example, run thousands of tests
in a short time, simulate many users at once, et cetera). Another reason to automate is to try to
make sure the project team didn’t break something that once worked (regression testing).”

One organization tried sharing QA resources and found it to be too much of a strain. Therefore, IT manag-
ers recommend that each team needs at least one dedicated QA resource, plus the help of the rest of the
team in testing.

The QA tester is responsible for:

Customer service.•	 Takes the necessary steps to ensure the customers’ needs are met to the maximum extent
possible in an accurate and timely manner. Communicates with technical and non-technical people.

Quality assurance.•	 Proactively interacts with all agile project teams to develop and promote quality
assurance strategies to improve overall information system quality assurance. Recommends new
processes, software and/or systems to improve the organization’s information systems development
effectiveness. Assesses and monitors adherence to software change control and other process stan-
dards. Identifies and communicates when QA processes are not being adhered to or when insuffi-
cient quality conditions exist in a project or process.

Software testing.•	 Displays a “test to break” attitude and an ability to take the point of view of the cus-
tomer, a strong desire for quality, and an attention to detail. Creates test scripts and test plans to enable
streamlined application testing practices and trains other employees in how to do this. Ensures that all
software is tested for defects, meeting end-user requirements. Works with testers, system owners, and
agile project teams to ensure that all problems are documented and resolved.

Various other project tasks.•	 Acts as a consultant for projects, processes, project implementation, and
application development.

www.businessofgovernment.org 29

Best Practices for Implementing Agile Methods

Assign Two Government User-Collaborators
(System Owners/End Users)
On government agile projects where an end user
assigned to the agile project may unexpectedly be
re-assigned to a different task (due to military assign-
ment rotations) in the middle of the project, it was
recommended to have two government users serve
as the main contacts for the project. The agile team
leaders said that having a second dedicated end
user kept the project moving forward when one was
unavailable, and thus the developers could continue
the short iterative software releases.

“We quickly realized that in our environment,
where our end users may be called away
with little notice due to the mission of the
DoD, that assigning two user-collaborators
just made good sense. Consistent feedback
from the end user stayed intact from
assigning two user collaborators.”

Provide Easy, Quick Access to Technical Experts
Various technical experts—for example, the security
manager, network administrator, chief architect, and
database administrator—need to be available as
needed to keep things moving. Developers need to
have an attitude that they are willing to say, “I don’t
know this” and “I need help.” Likewise, technical
experts need to have an attitude that they are willing
to help and not be judgmental.

Make the Agile Development Effort the
Only Assignment
Both the agile project leader and the agile team
members must have the agile IT project as their only
primary responsibility. This is a known agile require-
ment, but is often not the case when developers are
assigned to both maintenance and development
projects, or in some cases when they are responsible
for more than one information system. To reach
optimum efficiency, there should be no exceptions
to this best practice.

Workload Breakdown of the Quality Assurance Tester

In one organization, directors recently met to discuss the workload breakdown of this role and came up with
the following description (Schmidt, 2008):

User interface testing

35%

5%

30%

25%

5% Champions quality development practices

Creates testing strategies•	

Acts as a consultant for unit-/service-•	
level testing

Ensures needs of business are met •	
with a quality product

Creates/executes service-level tests

Quality reporting

Defect reporting•	

Testing metrics, support and maintenance of testing technologies

IBM Center for The Business of Government30

Best Practices for Implementing Agile Methods

A distributed team lead stated that having the
developers off-site freed them from being caught
up in the day-to-day politics of the office, reducing
distractions and allowing them to focus on the
work at hand.

Use Collaboration Engineering Techniques
Both XP and Scrum appear to under-emphasize
the challenging job facing the on-site customer
and system owner in gathering and prioritizing
the requirements for the project. To overcome
these challenges, one team used collaboration
engineering techniques and group decision sup-
port system tools to do initial planning and prepare
a “way ahead” plan of requirements (Fruhling
et al., 2007). System owners and other stakehold-
ers expressed that collaboration engineering prac-
tices helped give the agile project a jumpstart and
was an extremely effective way to validate, elicit,
and prioritize requirements for the entire agile
development project.

Establish Documentation Expectations
Team leads and developers stated it is acceptable
to have less documentation as long as coding stan-
dards, such as naming conventions and in-line
comments, are adhered to. Documentation can
further be accomplished through user stories, test
cases, and conditions of satisfaction. IT managers
advised organizations to determine what standards
are mandatory versus what standards are guidelines
or recommendations.

Reach Agreement on the Iteration
Cycle Timeline
All stakeholders need to come to a consensus on
the timeline of the release cycles. Most teams agreed
that the release cycle “sweet spot” is three-week
intervals, although two-week intervals are commonly
mentioned in the literature. It is easier to do agile
development in two-week iterations when the proj-
ect is only in development mode and there is not a
production system in parallel. When the system is
released to production and becomes more complex
and the user community grows, three-week intervals
are more doable.

Best Practices for Project
Implementation

Conduct Initial and Incremental
Planning Meetings
For every new agile project, IT managers suggested
a two-day strategic planning meeting to develop a
vision of the new system and to establish an overall
workable, stable system architecture. The meeting
should also define the scope, requirements, and
design for the next three months. System owners
should select three to five capabilities that the sys-
tem must have and three to five capabilities that the
system owner would like to have. As the XP process
unfolds, new and smaller ideas are implemented
within the three to five larger capabilities.

Conduct a Pilot Agile Project
Several IT managers recommended organizations
begin by piloting the agile process on one team
and holding weekly meetings for a period of time
to discuss how to fine-tune the process within the
organization. In these weekly meetings, members
should continuously examine XP practices and
strategize on adoption and adaptation of each prac-
tice. They also advised implementing a few practices
at a time, letting the agile teams work through the
process and become more effective, and then add-
ing more practices.

Consider à la Carte Introduction of
XP Practices
In a recent study, a survey was administered that
collected information on the actual amount of usage
of various XP principles and the perceptions of their
importance to project success. Some of the surveys
were returned by members of the teams interviewed.
Other respondents were from large Midwest organi-
zations that had also implemented XP. Results that
are significant to this report are:

XP principles identified as most often used were •	
collective ownership, continuous integration,
and planning game.

XP principles identified as the most important to •	
project success were continuous integration, test
first, planning game, collective ownership, on-
site customer, and sustainable pace.

www.businessofgovernment.org 31

Best Practices for Implementing Agile Methods

Thus, the XP principles that were deemed the most
important and used most often are collective owner-
ship, continuous integration, and planning game.
Therefore, it is logical that these XP principles are
the first ones implemented.

XP principles that are less commonly used, but
still perceived as important, include test first, on-
site customer, and sustainable pace (Fruhling and
Zhang, 2007). Based on this study, these principles
should be considered for inclusion in the next phase
of implementation of XP principles. The remaining
principles could be considered later. Table 5 sum-
marizes the results in priority order.

Focus on the Task, Not the Individual Status
One of the more experienced agile teams said
that they had very positive feedback when the
reporting at the Scrum meeting focused on the
task rather than the individual. This shifts the
focus from the individual to the team and, in
effect, promotes collective ownership and collec-
tive problem solving.

“By emphasizing the status of the task, rather
than the individual, managers noticed that
when roadblocks were identified, more
information sharing and problem solving
occurred among team members instead of
just the person with the problem being solely
responsible for doing the problem solving.”

Adjust Scrum to Match Project Scale
In some situations, project teams modified the
Scrum standup meeting schedule for scalability
(for example, team size) or if they were on a tight
deadline. The daily Scrum meeting was adjusted
to every other day. The meetings would occur on
Tuesday/Thursday one week and then Monday/
Wednesday/Friday the next week. Also, some
project teams split the team and had two Scrum
meetings for the same project.

Implement Time Boxing Productivity
Management
Formal time boxing was one of the advanced project
management practices employed by experienced
agile teams. Time boxing helped system owners and

other stakeholders evaluate if the development team
was meeting their goals and the level of productiv-
ity. IT managers could assign the tasks in a sprint
based on the estimated amount of effort and then
evaluate if those tasks were completed accordingly.
This may be especially useful in the government
contract environment, where contractors are
awarded based on their team performance.

Assign a Lead Pair Programmer
Pair programming was used sparingly, but one team
that actively uses pair programming modified it by
assigning one of the pair programmers to be the
lead and the reporter of progress on the task. Lead
programmers alternated throughout the project. This
technique was implemented because in a few cases
pair programming caused problems with account-
ability on task completion. There was not “one”
person accountable to get the task completed or
to report back when the pair was “stumped”
technically and not making progress. There was
a tendency to hide or not disclose that the pair
team needed additional technical expertise. At
times, neither member wanted to admit his or her
lack of technical expertise, so in these cases peer
pressure caused problems.

Outsource Documentation
Several teams enlisted a technical writer for creation
of the required documentation. Their philosophy
was to leave the software development to the devel-
opers and the documentation to a technical writer.
For example, the technical writer was responsible
for the system implementation documentation,
maintaining the architecture documentation, and
updating the training manual.

Table 5: Summary of Recommendations for
Implementation of XP Principles by Priority

 XP Principle
Most

Common
Most

Important

Collective ownership 1 1

Continuous integration 1 1

Planning game 1 1

Test first 2

On-site customer 2

Sustainable pace 2

IBM Center for The Business of Government32

Best Practices for Implementing Agile Methods

Match Tasks to Talents
Project managers emphasized the importance of
having the agile task assignments match team
members’ talents to achieve optimum results. For
example, developers with user interface design
skills and experience were assigned to design and
develop the graphical user interfaces, and develop-
ers with database knowledge were assigned data-
base query functions.

Keep the Best Practices of the Past
IT managers cautioned to be careful not to throw
away everything from structured methodology
practices, such as design walkthroughs and over-
the-shoulder code walkthroughs. One project team
continued to use system-wide design and software
walkthroughs periodically and included user inter-
face usability evaluations in the process.

Best Practices for Ongoing
Development

Designate an Agile Champion Team
Mature organizations using agile throughout their
organization have designated a “champion” team to
address problems of the agile Scrum and XP pro-
cess. For organizations that have multiple agile proj-
ects, each agile team selects a representative to be
part of a champion team that brings issues to this
group to resolve. The membership of this team is
rotated on an annual basis. The team members share
strategies that are working well on their team as
well as roadblocks or barriers their team is encoun-
tering with the agile process. The team works
together to identify possible solutions. IT managers
recommend the membership of this team be a cross-
section of Scrum team members.

This team is also charged with the task of inspecting
and adapting current techniques, in addition to
reviewing Scrum and XP processes that are not
employed to determine if they fit or can be modi-
fied within their organization. The interviewees
emphasized it was important to recognize that
adjustments of the agile practices will be on a
team-by-team basis. Further, organizations must
recognize that the agile process will need to be
continuously fine-tuned (for example, continuous
refactoring of the agile process).

Schedule Open Time
Managers and developers mentioned that schedul-
ing open time between 30-day sprints or quarterly
was beneficial so that developers could tie up
loose ends such as code cleanup, refactoring, mis-
cellaneous small tasks, and documentation. This is
another way to ensure that quality is being integrated
into the final product.

Automate Continuous Testing
Teams who have adopted the practice of writing the
test plan first are glad they did and stated they have
greatly benefited. Also, teams that use automated
testing tools say it has further enabled them to deliver
new capabilities in short iterations and to ensure a
quality product is delivered. Rational Robot was
noted as an especially useful testing tool. It helped
increase developer productivity and the quality of the
product. Agile teams should plan on system testing
being continuous.

Employ a Migration Control Expert
A distributed project team employed a migration con-
trol expert that managed the unclassified to classified
code migration process. Developing in an environ-
ment that is unclassified and implementing in an envi-
ronment that is classified has its own set of unique
challenges. It was more efficient for the developers to
work in an unclassified environment, thus allowing
them access to Internet tools and resources, and then
moving the code to the classified environment. The
migration control expert was both a technical expert
and application knowledge expert. The final classified
installation of code was then handled by a third party.

Exploit Multiple Forms of Communication
In the case of the distributed team where the
migration control expert and system owners
were located at USSTRATCOM and the IT devel-
opment team was located at the DoD contractor
headquarters, multiple forms of communication
were very useful. E-mails were used for communi-
cation and also as another form of documentation.
The team used weekly videoconference meetings
and quarterly face-to-face meetings to ensure
that all members were kept current and to increase
team unity. Also, all team members were always
available by phone. In addition, they used Instant
Messaging and accessed shared web pages to
discuss requirements.

www.businessofgovernment.org 33

Best Practices for Implementing Agile Methods

The migration control expert was the main liaison
between the two groups. He had excellent commu-
nication and facilitation skills. In addition, he had a
technical background, so he understood the techni-
cal issues well enough to discuss them with the
development team and could present their concerns
to the system owners.

Provide Access to the Internet to Research
Solutions
All teams mentioned the importance of having
access to the Internet to research technology prob-
lems and solutions. This is difficult to achieve in the
closed IT environment often found at military instal-
lations. This is one of the major reasons the distrib-
uted teams worked better and were very effective.

“The success of our agile development effort
was increased due to the developers having
access to the Internet to research technical
solutions. This is often not possible in most
DoD IT development projects. Thus, our
distributed environment helped overcome
this constraint.”

Address Classified Environment Challenges
IT managers identified the following major chal-
lenges in a classified government development
environment that may impact the success of an
agile development deployment:

Personal computer workstation configurations•	

Network availability•	

Availability to connect to data sources•	

NIPRNET (Non-Secure Internet Protocol Router •	
Network) and SIPRNET (Secure Internet Protocol
Router Network) versions

Cross-domain security issues•	

Infrastructure of web services architecture. •	

Although there were not any readily available solu-
tions to these challenges, it is valuable to address
them at the start of the project.

IBM Center for The Business of Government34

Best Practices for Implementing Agile Methods

Conclusion

The major purpose of this research is to present best
practices for implementation and management of
agile systems development methods on software
projects supporting DoD. We focus primarily on
eXtreme Programming and Scrum methodologies,
and identify 29 suggested best practices. These were
developed through a combination of a comprehen-
sive literature review and interviews with both DoD
and commercial IT development professionals. The
best practices are further divided into those that
should be employed at the initial adoption of agile
methodologies, those that should be inserted in the
next phase, and those that should be included once
the process is more mature. This gradual, phased
approach is shown to be the most effective in
migrating to the use of agile methods.

This report is aimed at facilitating the adoption of
agile development methods by defense-related orga-
nizations. This is important, in that the use of agile
methods will assist these groups as they help DoD
transform its information architecture into a more
modern, more adaptable, and more service-oriented
entity. This transformation is critical to the future
success of DoD, particularly with regards to its
command and control systems. Agile methods can
and should be at the core of that transformation,
and increased understanding and appreciation of
agile methods will facilitate and foster their increased
use within DoD.

We strove to maintain focus on the operational
level, with the intent of providing specific and
practical actionable information to help IT manag-
ers and analysts prepare their organization for the
transition. This research is important because it
will help managers successfully introduce and
implement the principles and practices of agile

methods into the staunchly traditional software
development environment of the U.S. military.
This report also presents best practices for manag-
ing agile software development teams, discusses
strategies to fine-tune the agile practices, and
addresses some of the unique challenges when
working in a DoD environment.

We find that most organizations implement agile
methods in a somewhat different manner and that
à la carte adoption is the norm. Many organizations
also customize the agile guidelines to fit their spe-
cific needs and environment, so future adopters
need not worry too much about having to conform
to rigid requirements.

Two factors in particular stood out as critical
for successful implementation and use of agile
methodologies:

A culture that is ready and willing to embrace •	
change

An IT infrastructure in place to support the •	
transition

Giving priority attention to such people-related
factors as staffing, culture, values, communications,
and expectations management is also critical to suc-
cessful software development using agile methods.

This research is a start in addressing the full-scale
adoption of agile development methods within
DoD. There is still much work to be done and
many opinions to be swayed, but the future is
bright. More and more larger projects are utilizing
some variant of agile methods, and more and more
of them are finding success in that effort.

www.businessofgovernment.org 35

Best Practices for Implementing Agile Methods

Agile itself means receptive, reactive, alert, and
quick to respond—all outstanding traits for
developing a service-oriented, customer-focused
approach to application development. Agile meth-
ods are finding greater and greater acceptance
within DoD, and the use of agile methodologies will
allow DoD to compete at Internet speeds, as they
must be able to do. Agile methods are the future of
software development within DoD, and this research
provides a preliminary glimpse of that future.

IBM Center for The Business of Government36

Best Practices for Implementing Agile Methods

References

Adkins, M. 2008. Interview, January.

Adkins, M., and R. Baldwin. 2008. Accenture,
February.

Alleman, G., M. Henderson, and R. Seggelke. 2003.
Making Agile Development Work in a Government
Contracting Environment—Measuring Velocity with
Earned Value, Agile Development Conference (ADC
’03), 114–119.

Ambler, S. 2001. What Is(n’t) Agile Modeling. The
Official Agile Modeling (AM) Site, www.agilemodel-
ing.com/essays/whatIsAM.htm.

Ambler, S. 2007a. Agile Adoption Rate Survey:
March 2007, www.ambysoft.com/surveys/agile-
March2007.html (last retrieved March 18, 2008).
Dr. Dobb’s Journal, Jan. 3, 2008, www.ddj.com/
architect/205207998.

Ambler, S. 2007b. Requirements Envisioning: An
Agile Best Practice, www.agilemodeling.com/essays/
initialRequirementsModeling.htm. Retrieved March
18, 2008.

Ambler, S. 2008. Scaling Test-Driven Development,
Dr. Dobb’s Journal, January 3, www.ddj.com/
architect/205207998. Retrieved March 18, 2008.

Armitage, J. 2004. Are Agile Methods Good for
Design? Interaction 11(1): 14–23.

Armstrong, D. 2007. Interview, USSTRATCOM.

Astels, D., G. Miller, and M. Novak. 2002.
A Practical Guide to eXtreme Programming.
Upper Saddle River, NJ: Prentice Hall.

Auer, K., and R. Miller. 2002. eXtreme Programming
Applied. Boston: Addison-Wesley.

Beck, K. 1999. Embracing Change with eXtreme
Programming. IEEE Computer 32(10): 70–77.

Beck, K. 2000. eXtreme Programming Explained.
Boston: Addison-Wesley.

Beck, K. 2004. eXtreme Programming Explained:
Embrace Change. 2nd ed. Boston: Addison-Wesley.

Beck, K., M. Beedle, A. Bennekum, A. van Cockburn,
W. Cunningham, M. Fowler, J. Grenning, J. Highsmith,
A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin,
S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas.
2001. Manifesto for Agile Software Development,
Snowbird, UT: Agile Alliance. Available online at
www.agilemanifesto.org (retrieved October 2005).

Benefield, G. 2008. Rolling Out Agile in a Large
Enterprise. Proceedings of the 41st Hawaii
International Conference on System Sciences,
January.

Biffl, S., A. Aurum, B. Boehm, H. Erdogmus, and
P. Grünbacher, eds. 2005. Value-Based Software
Engineering. Berlin: Springer-Verlag.

Boehm, B. 1988. A Spiral Model of Software
Development and Enhancement. IEEE Computer
21(5): 61–72.

Boehm, B. 2002. Get Ready for Agile Methods with
Care. IEEE Computer 35(1): 64–69.

Boehm, B. 2003. Value-Based Software Engineering.
Software Engineering Notes 28(2): 1–12.

www.businessofgovernment.org 37

Best Practices for Implementing Agile Methods

Bradbury, D. 2007. Scrum Down to Get a Project
Moving. Computer Weekly, 00104787, 9/4/2007.

Cao, L., K. Mohan, P. Xu, and B. Ramesh. 2004.
How Extreme Does Programming Have to Be?
Adapting XP Practices to Large-Scale Projects. In
R. H. Sprague, ed. Proceedings of the 37th Hawaii
International Conference on System Sciences. Los
Alamitos: IEEE Computer Society Press.

Cockburn, A. 2002. Agile Software Development.
Reading, MA: Addison-Wesley.

Cockburn, A., and J. Highsmith. 2001. Agile
Software Development: The People Factor. IEEE
Computer 34(11): 131–133.

Cockburn, A., and L. Williams. 2000. The Costs
and Benefits of Pair Programming. In Proceedings
of eXtreme Programming and Flexible Processes
in Software Engineering (XP2000). Cagliari, Italy.

Elssamadisy, A., and G. Schalliol. 2002. Recognizing
and Responding to Bad Smells in eXtreme
Programming. In J. Magee and M. Young, eds.
Proceedings of the 24th International Conference
on Software Engineering. New York: ACM Press.

Fruhling, A., and P. McDonald. 2008. A Case Study:
Introducing eXtreme Programming in a Command
and Control System for the US. Proceedings of the
41st Hawaii International Conference on System
Sciences. January.

Fruhling, A., L. Steinhauser, and G. Hoff. 2007.
Designing and Evaluating Collaborative Processes
for Requirements Elicitation and Validation.
Proceedings of the 40th Hawaii International
Conference on System Sciences. January.

Fruhling, A., and D. Zhang. 2007. An Empirical
Study Examining the Usage and Perceived
Importance of XP Practices. Proceedings of the
Americas Conference on Information Systems.

Glass, R. 2004. Matching Methodology to Problem
Domain. Communications of the ACM 47(5): 19–21.

Grimes, J. G. 2006. Which Emerging Technology
Will Have The Biggest Impact on Your Organization
in the Future? Signal, AFCEA’s International Journal.
September.

Highsmith J., and A. Cockburn. 2001. Agile Software
Development: the Business of Innovation. Computer
34(9): 120–122.

Iivari, J., R. Hirschheim, and H. K. Klein. 2001.
A Dynamic Framework for Classifying Information
Systems Development Methodologies and
Approaches. Journal of Management Information
Systems 17(3): 179–218.

Jakobson C. 2007. The Magic Potion for Code
Warriors! Maintaining CMMI Level 5 Certification
with Scrum. J. Sutherland, ed. Aarhus, Denmark:
Agile.

Keefer, G. 2005. Pair programming: an alternative
to reviews and inspections? Cutter IT Journal 18(1):
14–19.

Kehler, Robert C., Lt General, USAF. Address to
the Armed Forces Communications and Electronics
Association. Washington, D.C., 16 June 2006.
Transcript: www.stratcom.mil/Spch&test/CD_
AFCEA_16Jun06.html.

Martin, A., R. Biddle, and J. Noble. 2003. How
do XP, SCRUM and ASD Build The Right Software?
Position paper for the workshop “Are Agile
Methodologies Really Different?” OOPSLA.

Martin, R. 2000. eXtreme Programming
Development Through Dialog. IEEE Software
17(4): 12–13.

Martin, R. 2003. Agile Software Development:
Principles, Patterns, Practice. Upper Saddle River,
NJ: Pearson Education Inc.

McMahon, J. 2003. Five Lessons from Transitioning
to eXtreme Programming. Control Engineering 50(3):
59–65.

Muller, M. M., and F. Padberg. 2003. On the
Economic Evaluation of XP Projects. In P. Inverardi,
ed. Proceedings of the Ninth European Software
Engineering Conference held jointly with 10th ACM
SIGSOFT International Symposium on Foundations
of Software Engineering. New York: ACM Press.

Net-Centric Checklist, Version 2.1.3 2004. Retrieved
June 3, 2006 from www.defenselink.mil/ nii/org/cio/
doc/NetCentric_Checklist_v2-1-3_May12.doc.

IBM Center for The Business of Government38

Best Practices for Implementing Agile Methods

Paulk, M. 2001. Extreme Programming from a
CMM Perspective. IEEE Software 18(6): 19–26.

Poole, C., T. Murphy, J. Huisman, and A. Higgins.
2001. Extreme Maintenance. In G. Canfora and
A. Amschler Andrews, eds. Proceedings of the
17th IEEE International Conference on Software
Maintenance (ICSM ’01).

Potok, T. E. 1992. Extensions to the Spiral Model
to Support Joint Development of Complex Software
Systems, Proceedings of the 30th Annual Southeast
Regional Conference.

Rising, L., and N. Janoff. 2000. The Scrum Software
Development Process for Small Teams. IEEE
Software 17(4): 26–32.

Royce, W. W. 1970. Managing the Development of
Large Software Systems: Concepts and Techniques.
In Proceedings of IEEE WESTCON (Los Angeles, CA).

Schatz, B., and I. Abdelshafi. 2005. Primavera Gets
Agile: A Successful Transition to Agile. IEEE Software
22(3): 26–42.

Schmidt, B. 2008. E-mail correspondence.

Schmidt, B. 2007. Interview, Farm Credit Services of
America, October.

Schwaber, K., and M. Beedle. 2001. Agile Software
Development with Scrum. Englewood Cliffs, NJ:
Prentice Hall.

Shore, J. 2004. Continuous Design. IEEE Software
21(1): 20–22.

Smith, S., and S. Stoecklin. 2001. What We Can
Learn from eXtreme Programming. The Journal of
Computing in Small Colleges 17(2): 144–151.

Stephens, M., and D. Rosenberg. 2004. The irony
of eXtreme programming. Dr. Dobbs Journal 29(5):
44–47.

Sutherland, J. 2004. Agile Development: Lessons
Learned from the First Scrum. Cutter Agile Project
Management Advisory Service. Executive Update,
Vol. 5, No. 20.

Sutherland, J. 2005. Future of Scrum: Parallel
Pipelining of Sprints in Complex Projects. Agile
2005 Conference, Denver, CO.

Sutherland, J., C. Jakobsen, and K. Johnson. 2008.
Scrum and CMMI Level 5: The Magic Potion for
Code Warriors, Proceedings of the 41st Hawaii
International Conference on System Sciences.
January.

Sutherland, J., A. Viktorov, J. Blount, and N.
Puntikov. 2007. Distributed Scrum: Agile Project
Management with Outsourced Development Teams,
Proceedings of the 40th Hawaii Conference on
Systems Sciences.

U.S. Strategic Command (USSTRATCOM). US
Strategic Command History. www.stratcom.mil/
about-ch.html.

Watson, R. T., G. G. Kelly, R. D. Galliers, and J. C.
Brancheau. 1997. Key Issues in Information Systems
Management: an International Perspective. Journal
of Management Information Systems 13(4): 91–115.

www.businessofgovernment.org 39

Best Practices for Implementing Agile Methods

A bout t h e aut h o r

Ann L. Fruhling is an Associate Professor at the Peter Kiewit Institute,
College of Information Science and Technology, the University of
Nebraska–Omaha (UNO). She teaches core courses for the Manage-
ment Information Systems graduate program. In 2007, she received the
UNO Alumni Outstanding Teaching Award. Dr. Fruhling is a member
of the Association for Information Systems (AIS) and serves on the
Executive Board of the AIS IT in Healthcare Special Interest Group.
In addition, she is a research scholar for Northrop Grumman on the
C2SES project located at the U.S. Strategic Command.

Her research areas include agile system development, implementation
and management strategies, e-health user interface usability studies,
and system design strategies for medical emergency response systems.

Fruhling has published several research articles in the areas of agile system development, emergency response
systems, and user interface usability. Her research studies have appeared in publications including Journal of
Management Information Systems, Communications of the Association for Information Systems, Journal of
Computer Information Systems, International Journal of Electronic Health Care, International Journal of Coop-
erative Information Systems, and Journal of Electronic Commerce Research. She also has book chapters in
Value Based Software Engineering, Patient-Centered E-Health, and Advances in Management Information
Systems (forthcoming), as well as numerous conference papers.

Since 2002, Fruhling has been the chief principal investigator for a distributed video diagnostics and con-
sultation system for public health laboratories called STATPack™. STATPack™ is used in cases of emergen-
cies and biosecurity-related threats. To date, STATPack™ emergency response systems have been
implemented in three states and 48 public health, water, food, and veterinary laboratories. Fruhling’s
research in emergency response systems has been funded by the Centers for Disease Control and
Prevention, the Association of Public Health Laboratories, Nebraska Health and Human Services, the
National Aeronautics and Space Administration, and a Nebraska Research Initiative.

Fruhling holds a Ph.D. in management information systems from the University of Nebraska at Lincoln,
an MBA from the University of Nebraska at Omaha, and a B.S. in business administration from Colorado
State University.

A bout t h e aut h o r s

IBM Center for The Business of Government40

Best Practices for Implementing Agile Methods

Alvin E. Tarrell is currently a Ph.D. student in information technology at
the Peter Kiewit Institute at the University of Nebraska–Omaha (UNO-
PKI). His research interests include data visualization, visual computing,
knowledge management, and software development methodologies.

In addition, Mr. Tarrell is an operational analyst for Unisys Corporation,
supporting the Operations Directorate at the U.S. Strategic Command
near Omaha, Nebraska. He serves as software test director and lead
systems analyst for the Nuclear Planning and Execution System, a deci-
sion support system providing nuclear command and control support to
the highest levels of the U.S. government and military.

Prior to this, Tarrell enjoyed a 20-year career in the U.S. Navy, gaining
expertise in nuclear reactor operations, strategic weapons operation and
maintenance, and nuclear weapons command and control. His final
assignment was as chief of strategic operations for the National Airborne Operations Center, an airborne
command center supporting the president and secretary of defense in times of national emergency.

Tarrell holds master’s degrees in ocean engineering/operational oceanography from the Massachusetts
Institute of Technology (MIT) and Woods Hole Oceanographic Institute (WHOI) joint program, a master’s
degree in civil/environmental engineering from MIT, and a bachelor’s degree in chemical engineering from
the University of Nebraska–Lincoln. He also expects to complete a master’s program in management infor-
mation systems at UNO-PKI in the summer of 2008.

www.businessofgovernment.org 41

Best Practices for Implementing Agile Methods

K e y contact I nfo r m ation

To contact the authors:

Ann L. Fruhling
Associate Professor
Information Systems and Quantitative Analysis
Peter Kiewit Institute
College of Information Science and Technology
University of Nebraska at Omaha
1110 S. 67th Street
PKI 174 G
Omaha, NE 68182-0500
(402) 554-4968

e-mail: afruhling@unomaha.edu
To learn more about STATPack™, visit: www.statpack.org.

Alvin E. Tarrell
Ph.D. Student, Information Technology
Peter Kiewit Institute
University of Nebraska at Omaha
1110 S. 67th Street
Omaha, NE 68182-0500
(402) 850-0581

e-mail: atarrell@alum.mit.edu

IBM Center for The Business of Government42

Best Practices for Implementing Agile Methods

For a full listing of IBM Center publications,
visit the Center’s website at www.businessofgovernment.org.

Recent reports available on the website include:

REPORTS from
The IBM Center for The Business of Government

Collaboration: Networks and Partnerships

From Forest Fires to Hurricane Katrina: Case Studies of Incident Command Systems by Donald P. Moynihan
A Manager’s Guide to Resolving Conflicts in Collaborative Networks by Rosemary O’Leary and Lisa Blomgren Bingham

Contracting

Success Factors for Implementing Shared Services in Government by Timothy J. Burns and Kathryn G. Yeaton

E-Government/Technology

The Blogging Revolution: Government in the Age of Web 2.0 by David C. Wyld
Bridging the Digital Divide for Hard-to-Reach Groups by Heike Boeltzig and Doria Pilling

Human Capital Management

Designing and Implementing Performance-Oriented Payband Systems by James R. Thompson
Managing for Better Performance: Enhancing Federal Performance Management Practices by Howard Risher and Charles H. Fay
Seven Steps of Effective Workforce Planning by Ann Cotten

Innovation

Transforming Government Through Collaborative Innovation by Satish Nambisan

Managing for Performance and Results

Engaging Citizens in Measuring and Reporting Community Conditions: A Manager’s Guide by Alfred T. Ho
Strategic Use of Analytics in Government by Thomas H. Davenport and Sirkka L. Jarvenpaa

Missions and Programs

Delivery of Benefits in an Emergency: Lessons from Hurricane Katrina by Thomas H. Stanton

Organizational Transformation

Improving Service Delivery in Government with Lean Six Sigma by John Maleyeff

Presidential Transition

Strengthening Homeland Security: Reforming Planning and Resource Allocation by Cindy Williams

About the IBM Center for The Business of Government
The IBM Center for The Business of Government connects
public management research with practice. Since 1998, we
have helped public sector executives improve the effectiveness
of government with practical ideas and original thinking. We
sponsor independent research by top minds in academe and the
nonprofit sector, and we create opportunities for dialogue on a
broad range of public management topics.

The Center is one of the ways that IBM seeks to advance
knowledge on how to improve public sector effectiveness.
The IBM Center focuses on the future of the operation and
management of the public sector.

About IBM Global Business Services
With consultants and professional staff in more than 160 countries
globally, IBM Global Business Services is the world’s largest
consulting services organization. IBM Global Business Services
provides clients with business process and industry expertise,
a deep understanding of technology solutions that address
specific industry issues, and the ability to design, build and
run those solutions in a way that delivers bottom-line business
value. For more information visit www.ibm.com.

For additional information, contact:
Jonathan D. Breul
Executive Director
IBM Center for The Business of Government
1301 K Street, NW
Fourth Floor, West Tower
Washington, DC 20005
(202) 515-4504, fax: (202) 515-4375

e-mail: businessofgovernment@us.ibm.com
website: www.businessofgovernment.org

